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LIQUID CRYSTALS, 1994, VOL. 17, No. 5, 635-649 

Numerical analysis for a nematic droplet 
in polymer dispersed liquid crystals 

by T. ONOZAWA 
Development Department (22-28441), CoIor LCD Division, NEC Corporation, 

1753 Shimonumabe, Nakaharaku, Kawasaki, Kanagawa, 2 1 1, Japan 

(Received I0 March 1994; acepied 25 March 1994) 

Starting from the Landau-de Gennes free energy expression, the author has 
numerically analysed the director pattern in a nematic droplet of polymer 
dispersed liquid crystals. The nematic director has been understood as the 
eigenvector, which corresponds to the largest eigenvalue of the tensor order 
parameter. To investigate the droplet structure influence, all equations have been 
treated on the curvilinear coordinate system which is generated along the droplet 
boundary. In the case of spherical and spheroidal droplets with normal strong 
anchoring, the director exhibits an axial configuration and a disclination ring. 
The ring radius and the capactiance of the system change without hysteresis with 
the applied voltage. 

1. Introduction 
A polymer dispersed liquid crystal display (PDLCD) [l] is now very interesting, 

because it is expected to offer a wide viewing angle and high brightness [2]. Its 
operational mode is based on the control of light scattering by applied voltage. At 
zero or low field, directors orient axially or radially in a cavity [3], if an alignment on 
the cavity surface is normal. Therefore, differences in refractive index between the 
droplet and the surrounding material become large and light waves are strongly 
scattered by the droplets. On the contrary, directors in cavities line up almost 
parallel to the applied electric field direction at higher applied voltages and the 
difference is lost. Then, the PDLCD becomes transparent. 

However, detailed analyses have not yet been accomplished for the director 
behaviour in the droplet, when, at least, voltages are applied to the PDLCD. 
Moreover, it is well known that PDLCD exhibits hysteresis in its electro-optical 
characteristics, when an applied voltage is changed from lower to higher values and 
vice versa. The electro-optical properties of the PDLCD, including the hysteresis, 
depend strongly upon the droplet size, droplet structure, and structure distribution, 
as well as material parameters, such as elastic constants of the nematic liquid crystal 
and dielectric permittivity of both the liquid crystal and polymer. 

In this paper, the author has numerically investigated the behaviour of directors 
in a PDLCD by solving simultaneously the Euler-Lagrange equation for the tensor 
order parameter obtained from the Landau-de Gennes free energy [4] and the 
generalized Poisson equation, when an electric field is applied to PDLCD. In order 
to investigate the structure effects mentioned above, all equations have been treated 
on the curvilinear coordinate system, which is generated along nematic droplet 
boundaries [5 ] .  Therefore, the simulation program used is applicable for an arbitrary 
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636 T. Onozawa 

shape of a nematic droplet. It has been assumed, for simplicity, that the problem is 
solved in two-dimensional space; however directors can deform only in a plane. 
From symmetry consideration, the treatment can be applied for a droplet having a 
rotational symmetry, such as a sphere or spheroids. 

Optical scattering power is very difficult to calculate from the director pattern in 
a droplet [6-81. Therefore, the differential electric capacitance of the PDLCD has 
been studied as a system response to the external fields. 

For a spherical droplet and a spheroidal droplet with a normal strong anchoring 
alignment on its surface, the director pattern becomes axial and involves a 
discliniation ring. The author has assumed that the director is given as the 
eigenvector corresponding to the largest eigenvalue of the tensor order parameter, 
because the tensor order parameter, not the director, has been obtained form the 
Euler-Lagrange equation. The disclination ring radius changes uniquely with a 
change in an applied voltage and the electric capacity does not show any hysteresis 
with respect to an applied voltage. 

However, if the same problem is solved by using the Kilian and Hess method 
[9,10] as shown in Appendix B, a large hysteresis appeared in director distribution 
and electric capacity. The hysteresis origin is considered to be the nonlinearity 
involves in Kilian and Hess’s method. 

The next section describes the numerical procedures on the curvilinear coordi- 
nate system and illustrates how to derive the nematic director. The third section 
presents some numerical results which have been obtained for one droplet in the 
PDLCD. A summary and conclusion are given in the last section. 

2. Mathematical procedures 
Nematic liquid crystals are characterized by a traceless symmetric tensor order 

parameter S i j  in describing their elastic properties. By using this tensor order 
parameter, the Landau-de Gennes free energy density is given, under one constant 
approximation, as 

in the Cartesian coordinate. In equation (l), the summation convention is adopted. It 
was assumed that the scalar order parameter in tensor order parameter was 
constant. E, is an anisotropic dielectric permittivity of a nematic liquid crystal and E ,  
represents an applied electric field component. 

The Euler-Lagrange equations are derived from equation (1) by differentiation 
with respect to S,,, which accompany Tr ( S i j )  = O  and S i j =  S j i  as subsidiary 
conditions. 

1 
ASi j+ -&,EiEj=  2 A,, 

where Aij is the Lagrange parameter tensor [l 11. 

&ijk  implies the complete antisymmetric tensor of rank 3. It should be noticed that 
equation (2) is a linear partial differential equation with respect to the tensor order 
parameter S i j .  
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Numerical analysis in PDLCs 637 

An electric field is given by solving the generalized Poisson equation 

Vi(EijEj) = - Vi(EijVj V )  = 0. (4) 

cij= ~~d~~ + E,ninj. ( 5 )  

Here, the dielectric permittivity tensor E , ~  has the relation with the nematic director 

However, these treatments on the Cartesian coordinate system are very incon- 
ventient, when objects being analysed have a complex boundary structure. There- 
fore, in order to avoid this inconvenience, a curvilinear coordinate system is utilized. 
In the following, a two-dimensional problem is treated for simplicity and the 
director is confined to have components only in the plane. 

The discretization lattice is formed in the way illustrated in Appendix A. It is 
essential that the lattice lines constitute the curvilinear coordinate line c'. The 
covariant base vector e, is defined at each lattice point, as shown in figure 1. e, are 
not unit vectors and are not mutually perpendicular. To complement the non- 
orthogonality of the covariant base vectors, the contravariant base vector e' is given 
as 

. ejxek 
e'= (i, j ,  k cyclic). ei.(ej x ek) 

If we denote the base vectors as (i, j, k) =(e,,, eO2, eo3) = (ei, eg, ei) in the Cartesian 
coordinate system, ei are given as 

el=ix,+jyr, e,=ix,+jy,, and e,=k. (7) 
Here, xt; etc., mean the derivative of x by the curvilinear coordinate 5 .  Equation (7) 
is rewritten 

- .  
e,=AjeOj. 

Matrix 2: is known from equation (7) 

I 
Figure 1. Covariant base vectors are defined at each lattice point. e, is the vector directing 

from lattice point ( I ,  J )  to ( I  + 1, J ) .  e, is the vector directing from lattice point ( I ,  J )  
to ( I ,  J +  1). These vectors are not of unit length and are not mutually orthogonal. 
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638 T. Onozawa 

The contravariant base vectors are given by a matrix A:, which is the inverse matrix 
of aj. 

The covariant and contravariant metric tensor components are derived in the same 
way, which are necessary in the later calculations. From gij=ei.ej  for the covariant 
metric tensor, we obtain 

Here, J is the jacobian function of the transformation. The contravariant metric 
tensor g" is easily obtained from the relation 

gikgkj = h:. (13) 

A director of nematic liquid, which is a unit vector, is described in various forms, 
according to the base vectors. If we denote it as n ,  then 

. .  
n=n'  0 e O i -  - n  01 .e' 0 =n'e i=nie ' .  (14) 

It should be noticed that the covariant and contravariant components are not 
different in the Cartesian coordinate. The relations between individual nomenclatures 
are readily determined from the transformation rule for the base vector. In the 
curvilinear coordinate, covariant components are obtained as 

- .  
n i = A j n o j .  

The contravariant components are obtained as 

(15) 

For the tensor order parameter, the symmetric contravariant components are 
obtained from the director components, which are defined above. 

The mixed tensor order parameter is 

S j = S  ( .  n'nj--6j  k) , 
This expression is utilized to show that the tensor order parameter is traceless. 
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Numerical analysis in PDLCs 639 

The partial differential equation (2) for the tensor order parameter is converted 
to the one corresponding to the curvilinear coordinate system, if we replace a usual 
derivative with a covariant derivative. 

1 1 
2 2 (19) Asi j  + - & , ~ i ~ i  = Vk(VkSij) + - & , ~ i , q j  = Aij 

and for the mixed components, 

A covariant derivative for the tensor is given as 

v, sij = a, sij + r L r n s m j  + rj,, s i m ,  

and 

(22) v si-8 s i + p  sm-rmsi 
These constitute tensors of rank 3. Here, r:k represents Christoffel's symbol and is 
defined as 

k j -  k j km J k j  m *  

where rt1, rt2, ri1, ri2, and ri2 are non-zero in r i k ,  when metric 
tensor components are given as equations (1 2) and (1  3) in the two-dimensional case. 

of the Lagrange tensor is 
obtained and &, is given by taking trace of equation (20). If we eliminate the 
Lagrange parameter tensor from expression (1 9), we obtain the equation to be 
solved for the contravariant components, 

r12, 
From the symmetry property of equation (19), 

1 -  1 -  
2 "  2 

Vk(Vk S i j )  + ~~ E E' E j  = gkrnVrn(Vk S ' j )  + - 8, E ' E  j = 0 (24) 

where 

Equation (24) includes the covariant derivative of a mixed tensor of rank 3. 

nate system at the same time: 
The generalized Poisson equation (4) is transformed onto the curvilinear coordi- 

Vi(&$j) = - v,(&;Vjv) = 0. (26) 

The dielectric permittivity tensor E: relates to the liquid crystal director 

ej=E16j+e,n'nj. (27) 

Two-coupled partial differential equations, equations (24) and (26), should be 
solved simultaneously. However, the dielectric permittivity tensor E; is not given by 
the tensor order parameter but by the director of liquid crystal. Although E! is 
formally written by using S ; ,  the expression equation (27) is preferred. The reason is 
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640 T. Onozawa 

that the director is a unit vector. If we use S: in equation (27), then E: unlimitedly 
increases proportionally to an applied field strength, because Tr(Sj) = 0 never 
restrict the magnitude of the tensor order parameter. 

The director has been interpreted as the eigenvector [12], which corresponds to 
the largest eigenvalue of the characteristic equation of the symmetric tensor S". 
Actually calculating the eigenvector is convenient on the Cartesian coordinate 
system. S i j  is inversely transformed to obtain Sz. Then, the characteristic equation is 

because we have assumed that n i  = 0. For the eigenvector nb , it is possible to impose 
the condition 

(n:)' + (n$2 = 1. (29) 

For the largest eigenvalue po of equation (28), the eigenvector is derived from 
equations (28) and (29) 

and 

It is clear that a selection of + / - sign in expression (30 a) does not affect E: defined 
by equation (27). This means that the director is equivalent for both directions. The 
Cartesian component n; is converted to the curvilinear component according to 
equations (15) and (16). Then, these are substituted into equation (27). If E ,  is set 
equal to zero and E~ is replaced by the dielectric permittivity of polymer in equation 
(26), the same equation can be used for the polymer. 

For the boundary between nematic droplet and polymer, the vertical components 
of electric displacement vectors are equal on the both side of the droplet and the 
polymer. 

( 3  1) i 
Diroplet =Dpolymer  

and 

(32) i D6roplet = for the nematic droplet, 
Dpolymer i = E~ E for the polymer. 

(b) Here, E~ is the dielectric permittivity of a polymer material. 
Equations (24), (26), and ( 3  1) are discretized and numerically solved by the SOR 

method with appropriate boundary conditions. The author assumed, on discretizing, 
that the tensor order parameters are given at each lattice point and that the electric 
potential is given at the centre of the area surrounded by four lattice lines. The 
discretization of the term including S'j in equation (24) is given, for example, as 
follows for the component k =  1, m = 1, i= 1 and j =  1 at the lattice point (I, J ) :  
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Numerical analysis in PDLCs 64 1 

Because equation (33) involves a derivative of the Christoffel's symbol, careful 
treatment is necessary to avoid a virtual extra-force generation. 

3. Numerical results 
In this paper, the author studied the cases in which only one nematic droplet 

exists in a polymer material between two electrode plates. The parameters used in 
the calculation are shown in table 1 .  It has been assumed that the director alignment 
on the droplet surface is normal and has a strong anchoring property. 

Table 1. Parameters used in calculation. 

Elastic coefficient L, 5 x dyne 
Parallel permittivity Ell 20 
Perpendicular permittivity El I 
Permittivity of polymer EO 5.5 
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642 T. Onozawa 

Four types of droplet shapes have been investigated. First is a sphere (a) .  Second 
is a spheroid (b), with the major axis perpendicular to the electrode plane. Third is a 
spheroid (c )  with a parallel axis. The last one is a body of revolution ( d ) ,  which has a 
complex but rotationally symmetric boundary structure. This example shows that 
the author’s numerical procedures admit various shapes of nematic droplets. Cross- 
sectional views of PDLCDs, including these droplets, are shown in figure 2. 

3.1. Sphere 
The director distribution in the sphere takes an axial configuration in the absence 

of an external field, in which a disclination ring has a small radius, as shown in figure 
3 (a). The axis direction is determined by an initial setting of the director distribution 
and by a lattice system used in the calculation. 

When an external field is applied, the director distribution changes its shape. The 
disclination ring increases its radius according to an applied field strength, to be 
stuck on the droplet surface at higher applied voltages. The rings axis direction 
always becomes parallel to the applied field. Figure 3(b) shows the director 
distribution, when 10 V are applied between the electrodes. 

The equi-potential surface is shown in figure 3 (c )  for the same applied voltage. It 
can be seen that the electric field is repelled out from the nematic droplet, because 
the dielectric permittivity becomes larger than the value of the surrounding polymer 
due to the director behaviour. Therefore, the coupling between equations (24) and 
( 2 6 )  seems to be satisfactory. 

3.2.  Spheroid with a perpendicular major axis 
Figure 4(a) shows the director distribution at zero voltage in a spheroid which 

has a major principal axis perpendicular to the electrodes. In a spheroid, the 
disclination ring becomes an ellipse, whose major axis is coincident to that of the 
spheroid. Most directors align parallel to one minor principal axis for the spheroid 
in its central part. The reason is considered as being that the directors in this portion 
are more strongly affected by the side wall of the spheroid and align parallel to the 
director direction on the wall. 

However, the alignment direction superiority is lost, when an electric field is 
applied. As can be seen in figure 4(b), the directors readily align parallel to the 

____ 

(4 (4 (4 
Figure 2. Figures illustrate the PDLCD cross-sections, which include one nematic droplet 

with rotational symmetry enclosed by a polymer material. The spacing between the 
electrodes is 5pm. (a) 1.25pm radius sphere. (b) spheroid whose major axis is 
perpendicular to the electrode surfaces and is 1.9 pm in length. The length of the minor 
axis is 1.25 pm. (c) spheroid whose major axis is parallel to the electrode surface. Major 
and minor axis lengths are the same as (b) .  (d )  body of revolution in which a cusp 
height is 0.5pm. 
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Numerical analysis in PDLCs 643 

Figure 3. (a) Director distributes axially in the sphere in the absence of an external field. 
This distribution is retrieved after a high voltage application, if an applied voltage is set 
back to zero. (b) The pattern corresponds to that for 1OV application between 
electrodes. (c)  The equipotential surface in PDLCD on applying 1OV. 

applied field direction and the disclination ring lays in the plane including the minor 
principal axis of spheroid. As a result, in this case, pattern changes become large in 
the nematic droplet. After the electric field is set back to zero, the same director 
pattern as in figure 4 (a) reappears. 

In this treatment, the totality of deformation energy over the disclination loop 
could not be obtained, because the procedure is essentially two dimensional. 
Therefore, it would be probable that the wall alignment effect is overestimated 
compared with the disclination energy. 

3 .3 .  Spheroid with a parallel major axis 
For this droplet configuration at zero field, the director distribution is obtained 

by rotating the droplet, shown in figure 4 (a) ,  by 7112. Therefore, it seems to be clear, 
from figure 5(a), that most directors already align parallel to the applied electric 
field, although no field exists at zero applied voltage. An applied electric field 
expands the disclination ring and the perpendicular alignment region. In figure 5 (b), 
the pattern at 5 V  is shown. It can be seen that a difference is small, compared with 
that for zero field. 
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644 T. Onozawa 

(4 (b) 
Figure 4. Director configuration (a) in the absence of an external field, and (b) when 5 V are 

applied for the spheroidal droplet with perpendicular major axis. 

3.4. Electric capacity 
To investigate a response of PDLCD to an external field, a differential electric 

capacity 

has been calculated for the capacitors including a nematic droplet illustrated in the 
above subsections. Here, Q(V) is the electric charge stored on the electrode and 
obtained form the relation 

Q( V )  = - elpdv = Jd iv D dv = [D ds. (36) 
The surface integral in equation (36) is carried out on the electrode surface. 

Figure 6 shows the differential capacities for PDLCDs including a droplet whose 
shape and director distribution have already been explained. In figure 6 ,  the relative 
values are plotted to investigate the droplet shape effect. It can be seen that 

(4 (b) 
Figure 5.  Director configuration (a )  in the absence of an external field, and (b) when 5 V are 

applied for the spheroidal droplet with parallel major axis. 
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Numerical analysis in PDLCs 645 

individual capacity ratios are most different at zero voltage, but become almost 
equal at higher voltages. This electric capacity behaviour is well understood in 
consistent with the director distribution dependence on the droplet shape and an 
applied voltage. 

No hysteresis exists in the capacity-voltage characteristic curves for all cases, 
even if a voltage is applied to a much higher value and is changed by a much larger 
step. Therefore, the author thinks that the hysteresis in the actual PDLCDs is 
brought about by other causes, such as a weak anchoring, a coupling between 
nematic droplets, or an electric polarization, etc. 

However, if the same objects are treated by Kilian and Hess’s method, the 
resultant differential capacity exhibits a large hysteresis, as described in Appendix B. 
It is supposed that the origin is the nonlinearity which exists in their equations for 
the director. 

3.5.  Body of revolution 
One of the features of the author’s treatment is that a droplet of more complex 

boundary is successfully analysed. As an example, the body of revolution, whose 
cross-section is shown in figure 2(d) ,  has been studied. The director distribution in 
the body is shown in figure 7(a )  for the zero applied voltage case. 

Each convex part of the body includes a disclination line near its focal point. 
However, in the central part, the director distribution seems to be axial. On the 
boundary between the central part and convex part, another disclinations exist. 

If an external field is applied, two disclination lines in both lateral convex parts 
remain, but others disappear, resulting in strong deformations in the director 
distribution in the droplet wall neighbourhoods. The situation is shown in figure 
7 (b). 

4. Conclusions 
By solving the linear Euler-Lagrage equations for a tensor order parameter in a 

curvilinear coordinate system, a numerical analysis, which is applicable to various 

I I 

0 5 10 I 5  20 

V o l t  
Figure 6. Differential electric capacity versus applied voltage characteristics. -0-, sphere; 

- - - 0 - - -, spheroid with perpendicular major axis; -- * - -, spheroid with parallel 
major axis. The electric capacity Cmin is calculated for the director distribution in 
which all directors are set parallel to the electrode surface. The capacity C,,, 
corresponds to perpendicular director distribution in the same way. 
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646 T. Onozawa 

i i 
Figure 7. Director distribution (a) in the absence of an external field, and (b) when 5 V are 

applied for the droplet of body of revolution. 

nematic droplet shapes, has been developed. The director distribution and electric 
capacity have been calculated for PDLCDs, which include nematic droplets with 
different cavity shapes. 

The director has been interpreted as the eigenvector, which corresponds to the 
largest eigenvalue of the tensor order parameter. The director is used in the 
expression for the nematic dielectric permittivity tensor, because the tensor order 
parameter magnitude is not restricted by the property Tr (Si) = 0. 

No hysteresis has appeared in the director distribution and electric capacity 
dependences on an applied electric field, if one constant approximation is adopted. 
The author supposes that the hysteresis in the actual PDLCD is brought about by 
other origins, such as a weak anchoring, a coupling between nematic droplets, an 
electric polarization etc. It would be necessary to include these effects into the 
simulation model. 

This work has been confined to the two-dimensional case, because the treatment 
becomes very complex and tedious in the three-dimensional curvilinear system, 
where metric tensor and Christoffel's symbol have more non-zero components. 
However, as mentioned in the text, the deformation energy over the disclination 
loop can not be calculated in the two-dimensional model. If a more detailed analysis 
is necessary for various nematic droplet shapes, three-dimensional analysis might be 
desirable. 

Appendix A: Lattice generation 
In a numerical analysis, the regions to be studied are covered by discrete 

lattices, and the information is given only on an individual lattice point. In many 
cases, the values in the inner region are given by the values on the boundaries to be 
analysed. Especially in the liquid crystal problem, the alignment on the boundaries 
seem to be decisive. Therefore, the discretization lattice should reflect the boundary 
structure as correctly as possible. 

If the boundary values are given, a discretization lattice system can be generated 
by the solving equations [5 ] ,  as a Dirichlet problem, 

gijrgigj + Phrg = 0. 

Here, 5' represents the ith lattice line and Pk controls the line shape, which is 
attracted or repulsed toward the particular line or point. The contravariant metric 
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Numerical analysis in PDLCs 647 

tensor g'j is given by equation (13). In the text, 5's constitute the curvilinear 
coordinates. 

Two lattice systems have been made. One lattice system covers two electrodes, 
polymer material and nematic droplet surface. Another one corresponds to the 
inside of the droplet. These two lattice systems are coincident on the droplet surface. 
Discretization lattices including a spheroid are shown in figure 8, as an example. 

Appendix B: Director distribution by Kilian and Hess's method 
In this Appendix, the director distribution is numerically calculated by using 

Kilian and Hess's method on the curvilinear system. If equation (24) is multiplied by 
~ ~ ~ ~ S j k  and the resultant is contracted with respect to i, j and k,  we get 

EPkinkhi = (n x h)p = 0. (B 1) 
Here, a molecular field h is 

Equation (B 1) states that the director should align parallel to the molecular field h 
[13]. Therefore, if the renormalization constant is denoted by A, equation (B 1) is 
rewritten 

ni = Ahi. (B 3) 

This equation determines the director distribution in a nematic droplet, if an 
appropriate boundary condition is given. It should be noticed that expression (B 3) is 
a non-linear equation, with respect to the director ni.  Generalized Poisson equations 
(26) and (27) ar used in its form, because the director is known. 

The discretization is carried out before the contraction for j in equation (B 2). 
Discretizations for An'nj have the same form as equation (33), if S'j is replace by 

The same distribution as in figure 3(a)  has been obtained in the absence of an 
external field for the spherical droplet, shown in figure 2(a) .  If a high voltage is 
applied between the electrodes, the disclination ring sticks on the droplet surface. 
Even if the external field is set back to zero value, after such a high voltage 

Figure 8. Discretizing lattice system. The thick lines represent lines on which coordinates are 
given as boundary values. 
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648 T. Onozawa 

Figure 9. Director distribution, when an applied field is set back to zero value after a high 
field application. 

o “T- 90 .?A 
..__ * _... * .... * .... * .... * .... .... 

P+=---- 

060 ;’ 

0 1 0  2 0  5 0  

v o  I t  

30 $0 

Figure 10. Differential electric capacity versus applied voltage characteristics for the 
spherical droplet. -0-, values for director distributions calculated by Kilian and 
Hess’s method; --- 0 ---, calculated by our method. 

application, the same director distribution does not appear in this calculation. As 
shown in figure 9, the disclination ring continues to have a large radius, whose value 
is near that for the sphere. 

Corresponding to these director distribution behaviours, the differential electric 
capacity has a large hysteresis in the voltage-capacity characteristics, as shown in 
figure 10. 
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